Medical Resequencing: Future Innovations and Sequence-Based Association Analysis

Genotype-Based Warfarin Dose Prediction

Mark Rieder
Department of Genome Sciences
mrieder@u.washington.edu

Pharmacogenomics as a Model for Medical ReSequencing

- Clear genotype-phenotype link
 - intervention → variable response
- Pharmacokinetics - 5x variation
- Quantitative intervention and response
 - drug dose, response time, metabolism rate, etc.
- Target/metabolism of drug generally known
 - gene target that can be tested directly with response
- Prospective testing reduce variability and identify outliers

Medical Resequencing

- Discovery of rare functional variants -
 - Sequencing at the tails of the distribution
- Testing the Common Disease Common Variant (CDCV) hypothesis
 - Candidate genes very feasible
- Whole Genome Association Studies (WGAS)
- Whole Genome Sequencing - Developing Rapidly

Warfarin Pharmacogenetics

1. Background
 - Vitamin K cycle
 - Pharmacokinetics/Pharmacodynamics
 - Discovery of VKORC1
2. VKORC1 - SNP Discovery
3. VKORC1 - SNP Selection (tagSNPs)
4. Clinical Association Study
 - VKORC1 and Warfarin Dose
5. VKORC1 - SNP Replication/Function
Warfarin Dosing - Background

• Commonly prescribed oral anti-coagulant and acts as an inhibitor of the vitamin K cycle
• Prescribed following MI, atrial fibrillation, stroke, venous thrombosis, prosthetic heart valve replacement, and following major surgery
• Warfarin (Coumadin) >20 million US prescriptions (2007)

(-) Difficult to determine effective dosage
- Narrow therapeutic range
- Large inter-individual variation

(-) Major bleeding episodes in 1-2% of all patients
11% of all adverse events (Gurwitz et al. JAMA 2003)

(++) Prevents 20 strokes for each bleeding event

Goal: Use genetics to understand dose requirements to reduce complications

Monitoring Warfarin Dosing

• Measure prothrombin time (PT) - time to clot
Normal times are 10-13 sec

• Also measured as INR (International Normalized Ratio). Range 1.0 - 1.4 (normalized thromboplastin)

• On warfarin therapy, a patient is kept at about 2-3x normal (PT = 20-39 seconds)

<table>
<thead>
<tr>
<th>Target INR Range</th>
<th>Target</th>
<th>Target Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Ven Thrombosis/PE</td>
<td>2.5</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>CVL clot prophylaxis</td>
<td>1.5</td>
<td>1.2-2.0</td>
</tr>
<tr>
<td>Mechanical Valves</td>
<td>3.0</td>
<td>2.5-3.5</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>2.5</td>
<td>2.0-3.0</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>2.0</td>
<td>1.5-2.0</td>
</tr>
</tbody>
</table>

Ave: 5.2 mg/d
n = 186
European-American
30x dose variability

✓ Patient/Clinical/Environmenal Factors
✓ Pharmacokinetic/Pharmacodynamic - Genetic
Vitamin K Cycle

- Vitamin K synthesized by plants and bacteria
 - e.g., leafy green vegetables and intestinal flora
- Vitamin K - discovered from defects in blood "koagulation"
- Vitamin K - required coenzyme for the conversion of glutamic acid (Glu) to carboxyglutamic acid (Gla)
- **Glu** \rightarrow **Gla** modification needed for Ca$^{2+}$ binding, clot formation
- Vitamin K administration is the antidote for warfarin toxicity

Warfarin drug metabolism

- Major pathway for termination of pharmacologic effect is through metabolism of S-warfarin in the liver by CYP2C9
- CYP2C9 SNPs alter warfarin metabolism:
 - CYP2C9*1 (WT) - normal
 - CYP2C9*2 (Arg144Cys) - intermediate metabolizer
 - CYP2C9*3 (Ile359Leu) - poor metabolizer
- CYP2C9 alleles occur at:
 - European: *2 - 10.7% *3 - 8.5%
 - Asian: *2 - 0% *3 - 1-2%
 - African-American: *2 - 2.9% *3 - 0.8%

Effect of CYP2C9 Genotype on Anticoagulation-Related Outcomes

(Higashi et al., JAMA 2002)

Warfarin inhibits the vitamin K cycle

- Warfarin inhibits the vitamin K cycle via CYP2C9
- Epoxide Reductase
- Vitamin K-dependent clotting factors (FII, FVII, FIX, FX, Protein C/S/Z)
- Vitamin K administration is the antidote for warfarin toxicity

Effect of CYP2C9 Genotype on Anticoagulation-Related Outcomes

(Higashi et al., JAMA 2002)

- Still large variability in warfarin dose (15-fold) in *1/*1 "controls"?

TIME TO STABLE ANTICOAGULATION

- CYP2C9-WT ~90 days
- CYP2C9-Variant ~180 days

- Variant alleles have significant clinical impact
- *2 or *3 carriers take longer to reach stable antiocoagulation
Warfarin acts as a vitamin K antagonist

Vitamin K-dependent clotting factors (FII, FVII, FIX, FX, Protein C/S/Z)

Epoxide Reductase
γ-Carboxylase (GGCX)

Warfarin acts as a vitamin K antagonist

Inactivation

CYP2C9

γ-Carboxylase (GGCX)

Clotting Factors (FII, FVII, FIX, FX, Protein C/S/Z)

Warfarin resistance VKORC1 polymorphisms

• Rare non-synonymous mutations in VKORC1 causative for warfarin resistance (15-35 mg/d)
• No non-synonymous mutations found in 'control' chromosomes (n ~400)

Inter-Individual Variability in Warfarin Dose: Genetic Liabilities

SENSITIVITY
CYP2C9 coding SNPs: *3/*3
Common VKORC1 non-coding SNPs?

RESISTANCE
VKORC1 nonsynonymous coding SNPs

Warfarin maintenance dose (mg/day)

5 kb - Chromosome 16

New Target Protein for Warfarin

SNP Discovery: Resequencing VKORC1

- PCR amplicons → Resequencing of the complete genomic region
- 5 Kb upstream and each of the 3 exons and intronic segments: ~11 Kb
- Warfarin treated clinical patients (UWMC): 186 European
- Other populations: 96 European, 96 African-Am., 120 Asian

Rieder et al, NEJM 352, 2285-2293, 2005

SNP Selection: VKORC1 tagSNPs

SNP Testing: VKORC1 tagSNPs

SNP Discovery: Resequencing Results

VKORC1 - PGA samples (European, n = 23)
Total: 13 SNPs identified
10 common/3 rare (<5% MAF)

VKORC1 - Clinical Samples (European patients n = 186)
Total: 28 SNPs identified
10 common/18 rare (<5% MAF)

15 - intronic/regulatory
7 - promoter SNPs
2 - 3' UTR SNPs
3 - synonymous SNPs
1 - nonsynonymous
 - single heterozygous indiv. - highest warfarin dose = 15.5 mg/d

None of the previously identified VKORC1 warfarin-resistance SNPs were present (Rost, et al.)

Do common SNPs associate with warfarin dose?
SNP Testing: VKORC1 tagSNPs

Five Bins to Test

1. 381, 3673, 6484, 6853, 7566
 - Bin 1: \(p < 0.001 \) \(r^2 = 21\% \)
2. 2653, 6009
 - Bin 2: \(p < 0.02 \) \(r^2 = 3\% \)
3. 861
 - Bin 3: \(p < 0.01 \) \(r^2 = 4.5\% \)
4. 5808
 - Bin 4: \(p < 0.001 \) \(r^2 = 12\% \)
5. 9041
 - Bin 5: \(p < 0.001 \) \(r^2 = 11\% \)

Each tagSNP was adjusted for other confounders such as age, sex, medication, and CYP2C9.

Multi-SNP testing: Haplotypes

Five tagSNPs (10 total SNPs)

- Adjusted for other confounders such as age, sex, medication, and CYP2C9.

VKORC1 Haplotypes Associate with Dose

<table>
<thead>
<tr>
<th>Haplotype Identification Code</th>
<th>Haplotype Sequence</th>
<th>Frequency of Haplotype in Primary Patient Sample (n)</th>
<th>Average Maintenance Dose for Homozygous Patients (mg/d)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CCGATCTCTTG</td>
<td>0.12 (43)</td>
<td>2.9 (2.2 – 3.7)</td>
<td>0.0001</td>
</tr>
<tr>
<td>H2</td>
<td>CCGAGCTCTTG</td>
<td>0.24 (88)</td>
<td>3.0 (2.5 – 3.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>H3</td>
<td>CCGGTCCCCCG</td>
<td>0.01 (2)</td>
<td>NA</td>
<td>NS</td>
</tr>
<tr>
<td>H4</td>
<td>CCGGTCCGTG</td>
<td>0.00 (1)</td>
<td>NA</td>
<td>NS</td>
</tr>
<tr>
<td>H5</td>
<td>TCGAGCTCTTG</td>
<td>0.00 (1)</td>
<td>NA</td>
<td>NS</td>
</tr>
<tr>
<td>H6</td>
<td>TCGGTCCCGCG</td>
<td>0.00 (0)</td>
<td>NA</td>
<td>NS</td>
</tr>
<tr>
<td>H7</td>
<td>TCGGGTTCCGCA</td>
<td>0.35 (132)</td>
<td>6.0 (5.2 – 6.9)</td>
<td>0.0001</td>
</tr>
<tr>
<td>H8</td>
<td>TAGGGTCCGCA</td>
<td>0.08 (28)</td>
<td>4.8 (3.4 – 6.7)</td>
<td>0.76</td>
</tr>
<tr>
<td>H9</td>
<td>TACGGTCCGCG</td>
<td>0.21 (77)</td>
<td>5.5 (4.5 – 6.7)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Adjusted for all significant covariates: age, sex, amiodarone, CYP2C9 genotype

25% variance in dose explained

Multi-SNP testing: Haplotypes

Explore the evolutionary relationship across haplotypes

- **VKORC1** haplotypes cluster into divergent clades

- Patients can be assigned a clade diplotype:
 - e.g., Patient 1 - H1/H2 = A/A
 - Patient 2 - H1/H7 = A/B
 - Patient 3 - H7/H9 = B/B
VKORC1 clade diplotypes show a strong association with warfarin dose

Univ. of Washington
n = 185

Washington University
n = 386

Brian Gage
Howard McCleod
Charles Eby

21% variance in dose explained

SNP Function: VKORC1 Expression

Expression in human liver tissue (n = 53) shows a graded change in expression.

SNP Testing: VKORC1 tagSNPs

Five Bins to Test

<table>
<thead>
<tr>
<th>Bin</th>
<th>p-value</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.001</td>
<td>21%</td>
</tr>
<tr>
<td>2</td>
<td><0.02</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td><0.01</td>
<td>4.5%</td>
</tr>
<tr>
<td>4</td>
<td><0.001</td>
<td>12%</td>
</tr>
<tr>
<td>5</td>
<td><0.01</td>
<td>11%</td>
</tr>
</tbody>
</table>

1. 381, 3673, 6484, 6853, 7566
2. 2653, 6009
3. 861
4. 5808
5. 9041

SNP Function: VKORC1 Expression

Expression in human liver tissue (n = 53) shows a graded change in expression.

SNP Testing: VKORC1 tagSNPs

Five Bins to Test

<table>
<thead>
<tr>
<th>Bin</th>
<th>p-value</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.001</td>
<td>21%</td>
</tr>
<tr>
<td>2</td>
<td><0.02</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td><0.01</td>
<td>4.5%</td>
</tr>
<tr>
<td>4</td>
<td><0.001</td>
<td>12%</td>
</tr>
<tr>
<td>5</td>
<td><0.01</td>
<td>11%</td>
</tr>
</tbody>
</table>

1. 381, 3673, 6484, 6853, 7566
2. 2653, 6009
3. 861
4. 5808
5. 9041

SNP Function: VKORC1 Expression

Expression in human liver tissue (n = 53) shows a graded change in expression.

SNP Testing: VKORC1 tagSNPs

Five Bins to Test

<table>
<thead>
<tr>
<th>Bin</th>
<th>p-value</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.001</td>
<td>21%</td>
</tr>
<tr>
<td>2</td>
<td><0.02</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td><0.01</td>
<td>4.5%</td>
</tr>
<tr>
<td>4</td>
<td><0.001</td>
<td>12%</td>
</tr>
<tr>
<td>5</td>
<td><0.01</td>
<td>11%</td>
</tr>
</tbody>
</table>

1. 381, 3673, 6484, 6853, 7566
2. 2653, 6009
3. 861
4. 5808
5. 9041

General approach for candidate gene association study

1. Establish baseline genetic diversity in a small discovery population (n=23) (e.g. find all common SNPs via resequencing)
2. Calculate correlation between SNPs to find informative SNPs (tagSNPs)
3. Genotype tagSNPs in clinical population (n=186)
4. Perform statistical test for association
 - Association Results: **YES** - Multivariate Regression
 - Determine effect size - variability in dose explained
 - Adjusted for all confounding factors (Age, Sex, VKORC1, CYP2C9)
 - Association Results: **NO** - Because all common SNPs have been tested, it is very likely no association exists

GWAS approach for association studies

1. Establish baseline genetic diversity in a discovery population (HapMap) (e.g. find all common SNPs)
2. Calculate correlation between SNPs to find informative SNPs (tagSNPs)
3. Genotype tagSNPs in population
 - Use commercially available whole genome chips (e.g. Illumina, Affy)
 - QC genotype data
4. Perform statistical test for association
 - Association Results: Multivariate Regression
 - Establish p-value cutoff (1E-7)
 - Replicate in similar populations
 - If replication then association can be considered
 - NO - Association Results: All common SNPs have been tested, it is very likely no association exists assuming sufficient power

Clinical Adoption of Dosing Algorithms

NHLBI Clinical Warfarin Trial:
- Randomized trial of prospective genotype-guided dosing
- Multi-center, double-blind randomized trial (n=2,000)
 - "standard of care" vs. clinical alg. vs. clinical + genetic alg.
 - multiple outcomes (e.g. time within therapeutic range)

```
Total warfarin variance:
```

Design - WGAS Warfarin Dose

550 K Illumina
181 samples tested (Higashi, et al., Rieder, et al.)

- Call rates 99%
- 100% concordance - VKORC1-3673 (rs9923231) with rs10871454 (LD)
- 100% concordance - CYP2C9*3 (rs1057910)

Models Examined:

Independent SNP effects (univariate): ln(dose) = SNP

Full Model: Genetic + Clinical (multivariate):
ln(dose) = Age + Sex + Amiodarone + Losartan + CYP2C9 (*2 or *3) + VKORC1-3673
Warfarin Dose - Detection Power

Ave = 5.2 ± 2.5 mg/d
Additive effect, quantitative trait
P = 1x10⁻⁷

Univariate Results - SNP Associations

CYP2C9
VKORC1

Univariate Additive - log(p-value)

Range for large effect genes for warfarin dosing

Large real effects (VKORC1)
Non-replicated SNPs

Warfarin Dose GWA Replication Results
VKORC1 Pharmacogenetics Summary

1. *VKORC1* haplotypes (tagSNPs) are the major contributor to warfarin dose variability (21–25%). Overall variance described by clinical and genetic factors is 50-60%.

2. *VKORC1* haplotypes are correlated with mRNA expression in the liver.

3. Whole genome studies have power to detect large effect size (20–25% variance) with limited sample size. Power is limited to detect small/moderate effects.

4. No other SNPs have a large effect similar to *VKORC1*.

5. Prospective clinical trials in progress should be definitive.

6. Prospective genotyping may lead to more accurate warfarin dosing and have impacts on the overall clinical treatment time.

Acknowledgments

Greg Cooper
Allan Rettie
Alex Reiner
Dave Veenstra
Dave Blough
Ken Thummel
Debbie Nickerson

Josh Smith
Chris Baier
Peggy Dyer-Robertson

Washington University
Brian Gage
Howard McLeod
Charles Eby

Replication Studies
Julie Johnson, UF
Dan Roden, VU